On the exact constant in Jackson-Stechkin inequality for the uniform metric

S. Foucart, Yu. Kryakin, and A. Shadrin

Abstract

The classical Jackson-Stechkin inequality estimates the value of the best uniform approximation of a periodic function f by trigonometric polynomials of degree \leq $n-1$ in terms of its r-th modulus of smoothness $\omega_{r}(f, \delta)$. It reads $$
E_{n-1}(f) \leq c_{r} \omega_{r}\left(f, \frac{2 \pi}{n}\right),
$$ where c_{r} is some constant that depends only on r. It was known that c_{r} admits the estimate $c_{r}<r^{a r}$ and, basically, nothing else could be said about it.

The main result of this paper is in establishing that $$
\left(1-\frac{1}{r+1}\right) \gamma_{r}^{*} \leq c_{r}<5 \gamma_{r}^{*}, \quad \gamma_{r}^{*}=\frac{1}{\binom{r}{\left\lfloor\frac{2}{2}\right\rfloor}} \asymp \frac{r^{1 / 2}}{2^{r}},
$$ i.e., that the Stechkin constant c_{r}, far from increasing with r, does in fact decay exponentially fast. We also show that the same upper bound is valid for the constant $c_{r, p}$ in the Stechkin inequality for L_{p}-metrics with $p \in[1, \infty)$, and for small r we present upper estimates which are sufficiently close to $1 \cdot \gamma_{r}^{*}$.

1 Introduction

The classical Jackson-Stechkin inequality estimates the value of the best uniform approximation of a periodic function f by trigonometric polynomials of degree $\leq n-1$ in terms of its r-th modulus of smoothness $\omega_{r}(f, \delta)$. It reads

$$
\begin{equation*}
E_{n-1}(f) \leq c_{r} \omega_{r}\left(f, \frac{2 \pi}{n}\right) \tag{1.1}
\end{equation*}
$$

where c_{r} is some constant which depends only on r (see [10] or [3, p.205]).
Besides the case $r=1$, hardly any attempts have been made to find the best value of this constant c_{r}, or even to determine its dependence on r. Stechkin's original proof [10] (as well as alternative ones) allows to obtain the estimate $c_{r}<r^{a r}$, and, basically, nothing else could be said about it.

The main result of this paper is in establishing that

$$
\begin{equation*}
\left(1-\frac{1}{r+1}\right) \gamma_{r}^{*} \leq c_{r}<5 \gamma_{r}^{*}, \quad \gamma_{r}^{*}=\frac{1}{\binom{r}{\left\lfloor\frac{r}{2}\right\rfloor}} \asymp \frac{r^{1 / 2}}{2^{r}} \tag{1.2}
\end{equation*}
$$

[^0]i.e., that the Stechkin constant c_{r}, far from increasing with r, does in fact decay exponentially fast.

We also show that the same upper bound is valid for the constant $c_{r, p}$ in the Stechkin inequality for L_{p}-metrics with $p \in[1, \infty)$, and for small r we present upper estimates which are sufficiently close to $1 \cdot \gamma_{r}^{*}$.

In retrospect, such a result could have been anticipated, since for trigonometric approximation in L_{2}-metric, already in 1967, Chernykh [2] established that

$$
\begin{equation*}
E_{n-1}(f)_{2} \leq c_{r, 2} \omega_{r}\left(f, \frac{2 \pi}{n}\right)_{2}, \quad c_{r, 2}=\frac{1}{\sqrt{\binom{2 r}{r}}} \asymp \frac{r^{1 / 4}}{2^{r}} \tag{1.3}
\end{equation*}
$$

proving also that such a $c_{r, 2}$ is best possible (for the argument $\delta=\frac{2 \pi}{n}$ in $\omega_{r}(f, \delta)$). However, this result was based on Fourier technique for L_{2}-approximation and that does not work in other L_{p}-metrics.

Our method of proving (1.2) is based on deriving first the intermediate inequality

$$
\begin{equation*}
\|f\| \leq c_{n, r}(\delta) \omega_{r}(f, \delta), \quad f \in T_{n-1}^{\perp} \tag{1.4}
\end{equation*}
$$

which is valid for the functions f which are orthogonal to the trigonometric polynomials of degree $\leq n-1$. This may be viewed as a difference analogue of the classical BohrFavard inequality for differentiable functions

$$
\|f\| \leq \frac{F_{r}}{n^{r}}\left\|f^{(r)}\right\|, \quad f \in T_{n-1}^{\perp}
$$

and is of independent interest.
We make a pass from the Bohr-Favard-type inequality (1.4) to the Stechkin one (1.1) by approximating f with the de la Vallée Poussin sums $v_{m, n}(f)$ and using the fact that

$$
f-v_{m, n}(f) \in T_{m}^{\perp}, \quad \omega_{r}\left(f-v_{m, n}(f), \delta\right) \leq\left(1+\left\|v_{m, n}\right\|\right) \omega_{r}(f, \delta)
$$

With that we arrive at the inequality

$$
E_{n-1}(f) \leq\left\|f-v_{m, n}(f)\right\| \leq c_{m, n, r}(\delta) \omega_{r}(f, \delta),
$$

where we finally minimize the resulting constant over m, for given r, n and δ.

2 Results

For a continuous 2π-periodic function f, we denote by $E_{n-1}(f)$ the value of best approximation of f by trigonometric polynomials of degree $\leq n-1$ in the uniform norm,

$$
E_{n-1}(f):=\inf _{\tau \in T_{n-1}}\|f-\tau\|,
$$

and by $\omega_{r}(f, \delta)$ its r-th modulus of smoothness with the step δ,

$$
\omega_{r}(f, \delta):=\sup _{0<h \leq \delta}\left\|\Delta_{h}^{r}(f, \cdot)\right\|, \quad \Delta_{h}^{r}(f, x)=\sum_{i=0}^{r}(-1)^{i}\binom{r}{i} f(x+i h),
$$

where $\Delta_{h}^{r}(f, x)$ is the forward difference of order r of f at x with the step h.
We will study the best constant $K_{n, r}(\delta)$ in the Stechkin inequality

$$
E_{n-1}(f) \leq K_{n, r}(\delta) \omega_{r}(f, \delta),
$$

i.e., the quantity

$$
K_{n, r}(\delta):=\sup _{f \in C} \frac{E_{n-1}(f)}{\omega_{r}(f, \delta)}
$$

which depends on the given parameters $n, r \in \mathbb{N}$ and $\delta \in[0,2 \pi]$.
In such a setting (which goes back to Korneichuk and Chernykh) we may safely consider $\delta=\frac{\alpha \pi}{n}$ with some α not necessarily 1 or 2 . The choice of particular δ^{\prime} s can be motivated by two reasons:

1) "nice" look and/or tradition: $\delta=\frac{\pi}{n}$, or $\delta=\frac{2 \pi}{n}$, or (why not) $\delta=\frac{1}{n}$, and alike;
2) "nice" result:

$$
\sup _{f \in C} \frac{E_{n-1}(f)}{\omega_{r}(f, \delta)} \asymp c_{n, r}(\delta) .
$$

Ideally, both approaches should be combined to provide nice results for nice δ 's, but that happens not very often.

In this paper we obtain the following results.

1) First of all, we show that the exact order of the Stechkin constant $K_{n, r}(\delta)$ at $\delta=\frac{2 \pi}{n}$ (and in fact at any $\delta \in\left[\frac{2 \pi}{n}, \frac{\pi}{r}\right]$) is $r^{1 / 2} 2^{-r}$, namely

$$
K_{n, r}\left(\frac{2 \pi}{n}\right) \asymp \gamma_{r}^{*} \asymp \frac{r^{1 / 2}}{2^{r}},
$$

where

$$
\gamma_{r}^{*}=\frac{1}{\binom{r}{\left.\frac{r}{2}\right\rfloor}}=\left\{\begin{array}{cl}
\frac{1}{\binom{2 k}{k}}, & r=2 k \\
\frac{1}{\binom{2 k-1}{k-1}}, & r=2 k-1 .
\end{array}\right.
$$

Moreover, we locate the exact value of this constant within quite a narrow interval.
Theorem 1. We have

$$
c_{r}^{\prime}\left(\frac{2 \pi}{n}\right) \gamma_{r}^{*} \leq \sup _{f \in C} \frac{E_{n-1}(f)}{\omega_{r}\left(f, \frac{2 \pi}{n}\right)} \leq c_{r}\left(\frac{2 \pi}{n}\right) \gamma_{r}^{*},
$$

where

$$
c_{r}^{\prime}\left(\frac{2 \pi}{n}\right)=\left\{\begin{array}{cl}
1-\frac{1}{r+1}, & r=2 k-1 ; \\
1, & r=2 k ;
\end{array} \quad n \geq 2 r,\right.
$$

and

$$
c_{r}\left(\frac{2 \pi}{n}\right)=5, \quad n \geq 1 .
$$

Surprising is the fact that, in this theorem, the upper estimate is provided by one and the same linear method of approximation that works for all r simultaneously. Namely, for any r, the de la Vallée Poussin operator $v_{m, n}$ with $m=\left\lfloor\frac{8}{9} n\right\rfloor$ provides

$$
\left\|f-v_{m, n}(f)\right\| \leq 5 \gamma_{r}^{*} \omega_{r}\left(f, \frac{2 \pi}{n}\right), \quad \forall r \in \mathbb{N} .
$$

2) Next, we show that the value of the constant $c_{r}(\delta)$ remains bounded uniformly in r and n also for $\frac{\pi}{n}<\delta<\frac{2 \pi}{n}$ (but it grows to infinity as δ approaches $\frac{\pi}{n}$).
Theorem 2. For any $\alpha>1$, there exists a constant c_{α} which depends only on α such that

$$
E_{n-1}(f) \leq c_{\alpha} \gamma_{r}^{*} \omega_{r}\left(f, \frac{\alpha \pi}{n}\right), \quad n \geq 1
$$

3) Thirdly, although we did not succeed to reach the argument $\delta=\frac{\pi}{n}$ with an absolute constant in front of $\gamma_{r}^{*} \omega_{r}(f, \delta)$, we prove that this constant grows like $\mathcal{O}(\sqrt{r} \ln r)$ at most.
Theorem 3. For $\delta=\frac{\pi}{n}$, we have the estimate

$$
E_{n-1}(f) \leq c_{r}\left(\frac{\pi}{n}\right) \gamma_{r}^{*} \omega_{r}\left(f, \frac{\pi}{n}\right), \quad c_{r}\left(\frac{\pi}{n}\right)=\mathcal{O}(\sqrt{r} \ln r), \quad n \geq 1
$$

4) Fourthly, for small r, the general upper bound $c_{r}\left(\frac{2 \pi}{n}\right)=5$ can be decreased to the values that are quite close to the lower bound $c_{r}^{\prime} \approx 1$, thus giving support to the (upcoming) conjecture that $K_{n, r}(\delta) \leq 1 \cdot \gamma_{r}^{*}$ for $\delta \geq \frac{\pi}{n}$.
Theorem 4. For $\delta=\frac{\pi}{n}$ and $\delta=\frac{2 \pi}{n}$, we have

$$
E_{n-1}(f) \leq c_{r}(\delta) \gamma_{r}^{*} \omega_{r}(f, \delta)
$$

where $c_{2 k-1}(\delta)=c_{2 k}(\delta)$, and the values of $c_{2 k}(\delta)$ are given below

$$
\begin{array}{c|cc|c|c}
c_{2}\left(\frac{\pi}{n}\right) & c_{4}\left(\frac{\pi}{n}\right) \\
\hline 1 \frac{1}{4} & 2 \frac{7}{10}
\end{array}, \left.\quad \begin{gathered}
c_{2}\left(\frac{2 \pi}{n}\right)
\end{gathered} c_{4}\left(\frac{2 \pi}{n}\right) \right\rvert\, c_{6}\left(\frac{2 \pi}{n}\right) .
$$

5) Finally, all upper estimates in Theorems 1-4 remain valid for any $p \in[1, \infty]$. (There is no need to give a separate proof of this statement, since all the inequalities we used in the text still hold for the L_{p}-metrics, $1 \leq p<\infty$, in particular the Bohr-Favard inequality (4.1) and the inequalities of $\S 5$ involving the norms of the de la Vallée Poussin operator.)

Theorem 5. For any $p \in[1, \infty]$, we have

$$
E_{n-1}(f)_{p} \leq c_{r}(\delta) \gamma_{r}^{*} \omega_{r}(f, \delta)_{p}
$$

with the same constants $c_{r}(\delta)$ and the same δ 's as in Theorems 1-4. In particular,

$$
E_{n-1}(f)_{p} \leq 5 \gamma_{r}^{*} \omega_{r}\left(f, \frac{2 \pi}{n}\right)_{p}
$$

The latter L_{p}-estimate is hardly of the right order for $1<p<\infty$ because $\gamma_{r}^{*} \asymp r^{1 / 2} 2^{-r}$, while, for $p=2$, Chernykh's result (1.3) says that $K_{n, r}\left(\frac{2 \pi}{n}\right)_{2} \asymp r^{1 / 4} 2^{-r}$, so one may guess that

$$
K_{n, r}\left(\frac{2 \pi}{n}\right)_{p} \asymp r^{\max \left(1 / 2 p, 1 / 2 p^{\prime}\right)} 2^{-r} .
$$

This guess is partially based on the results of Ivanov [7] who obtained such an upper bound for the values $K_{n, r}(\delta)_{p}$ with relatively large $\delta=\frac{\pi r^{1 / 3}}{n}$, and proved that, for $p \in$ $[2, \infty]$, the order of the lower bounds is the same.
6) The value $\delta=\frac{\pi}{n}$ is critical in the sense that the Stechkin constant $K_{n, r}(\delta)$ and the constant γ_{r}^{*} are no longer of the same (exponential) order for $\delta=\frac{\alpha \pi}{n}$ with $\alpha<1$. Indeed, in this case, with $f_{0}(x):=\cos n x$, we have $\omega_{r}\left(f_{0}, \delta\right)=2^{r} \sin ^{r} \frac{\alpha \pi}{2}$ (see (7.2)) and $E_{n-1}\left(f_{0}\right)=1$, so that, for $\alpha<1$, we have

$$
\frac{K_{n, r}\left(\frac{\alpha \pi}{n}\right)}{\gamma_{r}^{*}}>\frac{c r^{1 / 2}}{\sin ^{r} \frac{\alpha \pi}{2}}>c_{\alpha} \lambda_{\alpha}^{r}, \quad \lambda_{\alpha}>1
$$

This being said, a natural question arises from the two estimates

$$
K_{n, r}\left(\frac{2 \pi}{n}\right) \asymp \gamma_{r}^{*}, \quad K_{n, r}\left(\frac{\pi}{n}\right) \leq c \sqrt{r} \ln r \cdot \gamma_{r}^{*}
$$

whether an extra factor at $\delta=\frac{\pi}{n}$ is essential. We believe it is not, and we are making the following brave conjecture.

Conjecture 2.1 For all $r \in \mathbb{N}$, we have

$$
\sup _{n \in \mathbb{N}} K_{n, r}\left(\frac{\pi}{n}\right):=\sup _{n \in \mathbb{N} f \in C} \frac{E_{n-1}(f)}{\omega_{r}\left(f, \frac{\pi}{n}\right)}=1 \cdot \gamma_{r}^{*}, \quad \gamma_{r}^{*}=\frac{1}{\binom{r}{\left\lfloor\frac{r}{2}\right\rfloor}}
$$

(Our point is mainly about the upper bound, namely that $K_{n, r}(\delta) \leq 1 \cdot \gamma_{r}^{*}$, for any $\delta \geq \frac{\pi}{n}$. The lower bound for even $r=2 k$ is established in this paper, while for odd r we guess that $K_{n, r}(\delta)$ tends to γ_{r}^{*} at $\delta=\frac{\pi}{n}$ for large n, but for $\delta>\frac{\pi}{n}$ it takes smaller values.)

This conjecture is true for $r=1$, for in this case we have Korneichuk's result [9]:

$$
1-\frac{1}{2 n} \leq K_{n, 1}\left(\frac{\pi}{n}\right)<1
$$

For $r=2$, the conjecture gives the estimate $K_{n, 2}\left(\frac{\pi}{n}\right)=\frac{1}{2}$ which is (to a certain extent) stronger than Korneichuk's one (because $\omega_{2}(f, \delta) \leq 2 \omega_{1}(f, \delta)$), so it would be interesting to prove (or to disprove) it in this particular case. Meanwhile, acccording to Theorems 1 and 4, we have

$$
\frac{1}{2} \leq K_{n, 2}\left(\frac{\pi}{n}\right) \leq \frac{5}{8}, \quad \frac{1}{2} \leq K_{n, 2}\left(\frac{2 \pi}{n}\right) \leq \frac{17}{32}
$$

For arbitrary r, it seems unlikely that the value of the Stechkin constant will ever be precisely determined, but it would be a good achievement to narrow the interval for $K_{n, r}\left(\frac{2 \pi}{n}\right)$, say, to $\left[\gamma_{r}^{*}, 2 \gamma_{r}^{*}\right]$, and to settle down the correct order of $K_{n, r}\left(\frac{\pi}{n}\right)$ with respect to r.
7) We finish this section with the remark that if, with some constant $c(\delta)$, the inequality

$$
E_{n-1}(f) \leq c(\delta) \gamma_{r}^{*} \omega_{r}(f, \delta)
$$

is true for an even $r=2 k$, then it is true for the odd $r=2 k-1$ too, with the same constant $c(\delta)$. Indeed, since $\gamma_{2 k-1}^{*}=2 \gamma_{2 k}^{*}$, and $\omega_{2 k}(f, \delta) \leq 2 \omega_{2 k-1}(f, \delta)$, we have

$$
\begin{aligned}
E_{n-1}(f) & \leq c(\delta) \gamma_{2 k}^{*} \omega_{2 k}(f, \delta) \\
& \leq c(\delta) \gamma_{2 k}^{*} \cdot 2 \omega_{2 k-1}(f, \delta)=c(\delta) \gamma_{2 k-1}^{*} \omega_{2 k-1}(f, \delta) .
\end{aligned}
$$

Therefore, it is sufficient to prove upper estimates only for even $r=2 k$.

3 Smoothing operators

Here, we present the general idea of our method.

1) For a fixed k, with

$$
\widehat{\Delta}_{t}^{2 k}(f, x):=\sum_{i=-k}^{k}(-1)^{i}\binom{2 k}{k+i} f(x+i t)
$$

being the central difference of order $2 k$ with the step t, and with ϕ_{h} being an integrable function which satisfies conditions
a) $\phi_{h}(t)=\phi_{h}(-t)$,
b) $\operatorname{supp} \phi_{h}=[-h, h]$,
c) $\int_{\mathbb{R}} \phi_{h}(t) d t=1$,
consider the following operator

$$
\begin{equation*}
W_{h}(f, x):=\frac{1}{\binom{2 k}{k}} \int_{\mathbb{R}} \widehat{\Delta}_{t}^{2 k}(f, x) \phi_{h}(t) d t . \tag{3.2}
\end{equation*}
$$

If a given subspace \mathcal{S} is invariant under the operator W_{h}, and if the restriction W_{h} to \mathcal{S} has a bounded inverse, then, for any $f \in \mathcal{S}$, we have a trivial estimate

$$
\begin{equation*}
\|f\| \leq\left\|W_{h}^{-1}\right\|_{\mathcal{S}}\left\|W_{h}(f)\right\|, \quad f \in \mathcal{S} . \tag{3.3}
\end{equation*}
$$

It follows immediately from the definition that

$$
\begin{equation*}
\left\|W_{h}(f)\right\| \leq\left\|\phi_{h}\right\|_{1} \gamma_{2 k}^{*} \omega_{2 k}(f, h), \quad \gamma_{2 k}^{*}=\frac{1}{\binom{2 k}{k}}, \tag{3.4}
\end{equation*}
$$

and we arrive at the following inequality:

$$
\begin{equation*}
\|f\| \leq c_{2 k}(h) \gamma_{2 k}^{*} \omega_{2 k}(f, h), \quad c_{2 k}(h)=\left\|\phi_{h}\right\|_{1}\left\|W_{h}^{-1}\right\|_{\mathcal{S}}, \tag{3.5}
\end{equation*}
$$

valid for all functions f from a given subspace \mathcal{S}.
2) Next, we present W_{h} as $W_{h}=I-U_{h}$ what allows us to get some bounds for $\left\|W_{h}^{-1}\right\|$ in (3.5) in terms of U_{h}.

To this end, for integer i (and, in fact, for any i), define the dilations $\phi_{i h}$ and the convolution operators $I_{i h}$ by the rule

$$
\phi_{i h}(t):=\frac{1}{i} \phi_{h}\left(\frac{t}{i}\right), \quad I_{i h}(f):=f * \phi_{i h}:=\int_{\mathbb{R}} f(\cdot-t) \phi_{i h}(t) d t .
$$

Then, taking into account that

$$
\int_{\mathbb{R}} f(x-i t) \phi_{h}(t) d t=\int_{\mathbb{R}} f(x-\tau) \frac{1}{i} \phi_{h}\left(\frac{\tau}{i}\right) d \tau=I_{i h}(f),
$$

and that also $I_{i h}=I_{-i h}$ (because $\phi_{i h}$ is even), we may put W_{h} in the following form:

$$
W_{h}=\frac{1}{\binom{2 k}{k}} \sum_{i=-k}^{k}(-1)^{i}\binom{2 k}{k+i} I_{i h}=I-2 \sum_{i=1}^{k}(-1)^{i+1} a_{i} I_{i h}, \quad a_{i}:=\frac{\binom{2 k}{k+i}}{\binom{2 k}{k}} .
$$

So, with the further notations

$$
U_{h}:=2 \sum_{i=1}^{k}(-1)^{i+1} a_{i} I_{i h}, \quad \psi_{k h}:=2 \sum_{i=1}^{k}(-1)^{i+1} a_{i} \phi_{i h},
$$

we obtain

$$
W_{h}=I-U_{h}, \quad U_{h}(f)=f * \psi_{k h} .
$$

Respectively, we may rewrite the inequality (3.5) in the following way.
Lemma 3.1 If the opeartor $\left(I-U_{h}\right)^{-1}$ is bounded on a given subspace \mathcal{S}, then, for all $f \in \mathcal{S}$, we have

$$
\|f\| \leq c_{2 k}(h) \gamma_{2 k}^{*} \omega_{2 k}(f, h), \quad c_{2 k}(h)=\left\|\phi_{h}\right\|_{1}\left\|\left(I-U_{h}\right)^{-1}\right\|_{\mathcal{S}} .
$$

3) Now, we call upon elementary properties of Banach algebras (see, e.g., Kantorovich, Akilov [8, Chapter 5, §4]) for the claim that if an operator $U: \mathcal{S} \rightarrow \mathcal{S}$ satisfies $\sum_{m=0}^{\infty}\left\|U^{m}\right\|<\infty$, then the operator $I-U$ is invertible, and the norm of its inverse admits the estimate

$$
\begin{equation*}
\left\|(I-U)^{-1}\right\|_{\mathcal{S}} \leq \sum_{m=0}^{\infty}\left\|U^{m}\right\|_{\mathcal{S}} . \tag{3.6}
\end{equation*}
$$

Proposition 3.2 If ϕ_{h} is such that $\sum_{m=0}^{\infty}\left\|U_{h}^{m}\right\|_{\mathcal{S}}=A_{h}<\infty$, then, for any $f \in \mathcal{S}$, we have

$$
\|f\| \leq c_{2 k}(h) \gamma_{2 k}^{*} \omega_{2 k}(f, h), \quad c_{2 k}(h)=A_{h}\left\|\phi_{h}\right\|_{1} .
$$

4) Finally, let us make a short remark about the structure of the subspaces \mathcal{S} that may go into consideration. It is clear that, if \mathcal{S} is shift-invariant, i.e., together with f it contains also $f(\cdot+t)$ for any t, then \mathcal{S} is invariant under the action of W_{h} for any h. A typical example is a subspace \mathcal{S} that contains (or does not contain) certain monomials $\binom{\cos k x}{\sin k x}$.

We will consider $\mathcal{S}=T_{n-1}^{\perp}$, the subspace of functions which are orthogonal to trigonometric polynomials of degree $\leq n-1$.

4 A difference analogue of the Bohr-Favard inequality

Denote by T_{n-1}^{\perp} the set of functions f which are orthogonal to T_{n-1}, i.e., such that

$$
\int_{-\pi}^{\pi} f(x) \tau(x) d x=0, \quad \forall \tau \in T_{n-1} .
$$

The Bohr-Favard inequality for such functions reads

$$
\begin{equation*}
\|f\| \leq \frac{F_{r}}{n^{r}}\left\|f^{(r)}\right\|, \quad f \in T_{n-1}^{\perp} \tag{4.1}
\end{equation*}
$$

where F_{r} are the Favard constants, which are usually defined by the formula

$$
F_{r}:=\frac{4}{\pi} \sum_{i=0}^{\infty} \frac{(-1)^{i(r+1)}}{(2 i+1)^{r+1}},
$$

and which satisfy the following relations:

$$
F_{0}=1<F_{2}=\frac{\pi^{2}}{8}<\cdots<\frac{4}{\pi}<\cdots<F_{3}=\frac{\pi^{3}}{24}<F_{1}=\frac{\pi}{2} .
$$

In this section we obtain a difference analogue of the Bohr-Favard inequality in the form

$$
\|f\| \leq c_{n, 2 k}(h) \gamma_{2 k}^{*} \omega_{2 k}(f, h), \quad f \in T_{n-1}^{\perp}
$$

using the approach from the previous section (Proposition 3.2). Namely, we consider the operator

$$
U_{h}=2 \sum_{i=1}^{k}(-1)^{i+1} a_{i} I_{i h}, \quad a_{i}=\binom{2 k}{k+i} /\binom{2 k}{k},
$$

with the following specific choice of I_{h} (and respectively of ϕ_{h}):

$$
I_{h}(f, x):=\frac{1}{h^{2}} \int_{-h / 2}^{h / 2} \int_{-h / 2}^{h / 2} f\left(x-t_{1}-t_{2}\right) d t_{1} d t_{2},
$$

i.e., taking $I_{h}(f)$ as the Steklov function of order 2. It is known that $I_{h}(f, x)=f * \phi_{h}$, where

$$
\phi_{h}(t)= \begin{cases}\frac{1}{h}\left(1-\frac{|t|}{h}\right), & t \in[-h, h] \\ 0, & \text { otherwise }\end{cases}
$$

i.e., ϕ_{h} is the L_{1}-normalized B-spline of order 2 (the hat-function) with the step-size h supported on $[-h, h]$. We also have

$$
I_{i h}^{\prime \prime}(f, x)=-\frac{1}{(i h)^{2}} \widehat{\Delta}_{i h}^{2} f(x)=\frac{1}{(i h)^{2}}[f(x-i h)-2 f(x)+f(x+i h)]
$$

We denote by $\left\|U_{h}\right\|_{T_{n-1}^{\perp}}$ the norm of the operator U_{h} on the space T_{n-1}^{\perp}.
Lemma 4.1 We have

$$
\begin{equation*}
\left\|U_{h}^{\prime \prime}\right\| \leq \frac{\pi^{2} \mu^{2}}{h^{2}}, \quad \mu^{2}:=\mu_{2 k}^{2}:=\frac{8}{\pi^{2}} \sum_{\text {odd } i}^{k} \frac{a_{i}}{i^{2}}<1 \tag{4.2}
\end{equation*}
$$

Proof. 1) We have

$$
\begin{align*}
U_{h}^{\prime \prime}(f, x) & =2 \sum_{i=1}^{k}(-1)^{i+1} a_{i} I_{i h}^{\prime \prime}(f, x) \\
& =2 \sum_{i=1}^{k}(-1)^{i+1} \frac{a_{i}}{(i h)^{2}}[f(x-i h)-2 f(x)+f(x+i h)] \\
& =\frac{2}{h^{2}} \sum_{i=1}^{k}(-1)^{i+1} \frac{a_{i}}{i^{2}}[f(x-i h)-2 f(x)+f(x+i h)] \tag{4.3}\\
& =\frac{2}{h^{2}} \sum_{i=1}^{k}(-1)^{i+1} a_{i}^{\prime}[-2 f(x)]+\frac{2}{h^{2}} \sum_{i=1}^{k}(-1)^{i+1} a_{i}^{\prime}[f(x-i h)+f(x+i h)]
\end{align*}
$$

where in the last line we put $a_{i}^{\prime}=\frac{a_{i}}{i^{2}}$. Hence,

$$
\begin{aligned}
\frac{h^{2}}{4} \frac{\left\|U_{h}^{\prime \prime}(f)\right\|}{\|f\|} & \leq\left|\sum_{i=1}^{k}(-1)^{i+1} a_{i}^{\prime}\right|+\sum_{i=1}^{k}\left|a_{i}^{\prime}\right|=\sum_{i=1}^{k}(-1)^{i+1} a_{i}^{\prime}+\sum_{i=1}^{k} a_{i}^{\prime} \\
& =2 \sum_{\text {odd } i}^{k} a_{i}^{\prime}=2 \sum_{\text {odd } i}^{k} \frac{a_{i}}{i^{2}}=: \frac{\pi^{2}}{4} \mu^{2}
\end{aligned}
$$

i.e.,

$$
\left\|U_{h}^{\prime \prime}\right\| \leq \frac{\pi^{2} \mu^{2}}{h^{2}}
$$

2) The estimate for μ^{2} follows from the fact that $a_{i}=\binom{2 k}{2 k+i} /\binom{2 k}{k}<1$, and that $\sum_{i=1}^{\infty} \frac{1}{i^{2}}=\frac{\pi^{2}}{6}$:

$$
\frac{\pi^{2}}{8} \mu^{2}=\sum_{\text {odd } i}^{k} \frac{a_{i}}{i^{2}}<\sum_{\text {odd } i}^{\infty} \frac{1}{i^{2}}=\sum_{i=1}^{\infty} \frac{1}{i^{2}}-\sum_{\text {even } i}^{\infty} \frac{1}{i^{2}}=\left(1-\frac{1}{4}\right) \sum_{i=1}^{\infty} \frac{1}{i^{2}}=\frac{\pi^{2}}{8} .
$$

We will prove in $\S 6$ that $1-\mu_{2 k}^{2} \asymp \frac{1}{\sqrt{2 k}}$.
Lemma 4.2 We have

$$
\begin{equation*}
\left\|U_{h}^{m}\right\|_{T_{n-1}^{\perp}} \leq F_{2 m}\left(\frac{\pi^{2} \mu^{2}}{n^{2} h^{2}}\right)^{m} \tag{4.4}
\end{equation*}
$$

Proof. 1) If f is orthogonal to T_{n-1}, then so are its Steklov functions $I_{i h}(f)$, hence $U_{h}(f)$ and the iterates $U_{h}^{m}(f)$ as well. Also, the operators D^{2} (of double differentiation) and U_{h} commute (since D^{2} and $I_{i h}$ clearly commute). Therefore, using the Bohr-Favard inequality with the $(2 m)$-th derivative, we obtain

$$
\begin{equation*}
\left\|U_{h}^{m}(f)\right\|_{T_{n-1}^{\perp}} \leq \frac{F_{2 m}}{n^{2 m}}\left\|D^{2 m} U_{h}^{m}(f)\right\|=\frac{F_{2 m}}{n^{2 m}}\left\|\left[D^{2} U_{h}\right]^{m}(f)\right\| \leq \frac{F_{2 m}}{n^{2 m}}\left\|D^{2} U_{h}\right\|^{m}\|f\| \tag{4.5}
\end{equation*}
$$

By (4.2), we get $\left\|D^{2} U_{h}\right\| \leq \frac{\pi^{2} \mu^{2}}{h^{2}}$, hence the conclusion.
Remark 4.3 For $h=\frac{\pi}{n}$, we have equality in (4.4), i.e.,

$$
\left\|U_{h}^{m}\right\|_{T_{n-1}^{\perp}}=F_{2 m} \mu^{2 m}, \quad h=\frac{\pi}{n}
$$

which is attained on the Favard function $\varphi_{n}(x)=\operatorname{sgn} \sin n x$. Indeed, for $h=\frac{\pi}{n}$, we have

$$
\varphi_{n}(x-i h)-2 \varphi_{n}(x)+\varphi_{n}(x+i h)=\left\{\begin{array}{cc}
-4 \varphi_{n}(x), & \text { odd } i \\
0, & \text { even } i
\end{array}\right.
$$

and it follows from (4.3) that $U_{h}^{\prime \prime}\left(\varphi_{n}\right)=-\frac{\pi^{2} \mu^{2}}{h^{2}} \varphi_{n}$, and respectively

$$
D^{2 m} U_{h}^{m}\left(\varphi_{n}\right)=(-1)^{m}\left(\frac{\pi^{2} \mu^{2}}{h^{2}}\right)^{m} \varphi_{n}
$$

On the other hand, the Bohr-Favard inequality turns into equality on the functions $f \in$ T_{n-1}^{\perp} such that $f^{(2 m)}(x)=a \varphi_{n}(x-b)$, hence on $U_{h}^{m}\left(\varphi_{n}\right)$. Therefore, in (4.5), we have equalities all the way through.

Proposition 4.4 Let $f \in T_{n-1}^{\perp}$, and let $h>\frac{\pi}{n} \mu$. Then

$$
\begin{equation*}
\|f\| \leq c_{n, 2 k}(h) \gamma_{2 k}^{*} \omega_{2 k}(f, h) \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n, 2 k}(h)=\left(\cos \frac{\pi}{2} \rho\right)^{-1}, \quad \rho=\frac{\pi \mu}{n h}<1 . \tag{4.7}
\end{equation*}
$$

Proof. From Proposition 3.2, using the estimate (4.4), we obtain

$$
c_{n, 2 k}(h)=\sum_{m=0}^{\infty}\left\|U_{h}^{m}\right\|_{T_{n-1}^{\perp}} \leq \sum_{m=0}^{\infty} F_{2 m} \rho^{2 m}=\left(\cos \frac{\pi}{2} \rho\right)^{-1}
$$

the last equality (provided $\rho<1$) being the Taylor expansion of $\sec \frac{\pi}{2} x=1 / \cos \frac{\pi}{2} x$. (The latter is usually given in terms of the Euler numbers $E_{2 m}$ as $\sec x=\sum_{m=0}^{\infty} \frac{\left|E_{2 m}\right|}{(2 m)!} x^{2 m}$, see, e.g., Gradshteyn, Ryzhik [6, §1.411.9], so we have sec $\frac{\pi}{2} x=\sum_{m=0}^{\infty} \frac{\left|E_{2 m}\right| \pi^{2 m}}{2^{2 m}(2 m)!} x^{2 m}$, and we use the fact that $F_{2 m}=\frac{\left|E_{2 m}\right| \pi^{2 m}}{2^{2 m}(2 m)!}$, see $[6, \S 0.233 .6]$.)

Theorem 4.5 If $f \in T_{n-1}^{\perp}$, then, for any $\alpha>1$, we have

$$
\begin{equation*}
\|f\| \leq c_{\alpha} \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{\alpha \pi}{n}\right), \quad c_{\alpha}=\left(\cos \frac{\pi}{2 \alpha}\right)^{-1} . \tag{4.8}
\end{equation*}
$$

Proof. Just put $h=\frac{\alpha \pi}{n}$ in (4.6), and use the fact that $\mu<1$.
Let us give some particular cases of Theorem 4.5.

$$
\begin{align*}
& \text { 1) } \alpha=2, \quad c_{\alpha}=\left(\cos \frac{\pi}{4}\right)^{-1}=\sqrt{2}, \quad\|f\| \leq 1 \frac{1}{2} \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{2 \pi}{n}\right) \text {; } \\
& \text { 2) } \alpha=\frac{3}{2}, \quad c_{\alpha}=\left(\cos \frac{\pi}{3}\right)^{-1}=2, \quad\|f\| \leq 2 \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{3 \pi}{2 n}\right) \text {; } \tag{4.9}\\
& \text { 3) } \alpha=\frac{4}{3}, \quad c_{\alpha}=\left(\cos \frac{3 \pi}{8}\right)^{-1}=2.61, \quad\|f\| \leq 2 \frac{2}{3} \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{4 \pi}{3 n}\right) \text {; } \\
& \text { 4) } \alpha=\frac{5}{4}, \quad c_{\alpha}=\left(\cos \frac{2 \pi}{5}\right)^{-1}=3.23, \quad\|f\| \leq 3 \frac{1}{4} \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{5 \pi}{4 n}\right) \text {. }
\end{align*}
$$

From the relations $\cos \frac{\pi}{2} x=\sin \frac{\pi}{2}(1-x) \geq \frac{\pi}{4}\left(1-x^{2}\right)$, it follows that, in (4.8),

$$
c_{\alpha}<\frac{4}{\pi}\left(1-\frac{1}{\alpha^{2}}\right)^{-1},
$$

i.e., c_{α} behaves like $\frac{2}{\pi} \frac{1}{\alpha-1}$ as $\alpha \searrow 1$.

Theorem 4.6 If $f \in T_{n-1}^{\perp}$, then, for $\delta=\frac{\pi}{n}$, we have

$$
\begin{equation*}
\|f\| \leq c_{2 k} \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{\pi}{n}\right), \quad c_{2 k}=\mathcal{O}(\sqrt{2 k}) \tag{4.10}
\end{equation*}
$$

Proof. Putting $h=\frac{\pi}{n}$ into (4.6), we obtain the inequality (4.10) with the constant

$$
\begin{equation*}
c_{2 k}=\left(\cos \frac{\pi}{2} \mu_{2 k}\right)^{-1}<\frac{4}{\pi}\left(1-\mu_{2 k}^{2}\right)^{-1} \tag{4.11}
\end{equation*}
$$

and we are proving in $\S 6$ that $1-\mu_{2 k}^{2} \asymp \frac{1}{\sqrt{2 k}}$.

5 Stechkin inequality for $\frac{\pi}{n}<\delta \leq \frac{2 \pi}{n}$

1) Consider the de la Vallée Poussin sum (operator)

$$
\begin{equation*}
v_{m, n}=\frac{1}{n-m} \sum_{i=m}^{n-1} s_{i}, \tag{5.1}
\end{equation*}
$$

which is an average of $(n-m)$ Fourier sums s_{i} of degree i. For $m=n-1$ and for $m=0$, it becomes the Fourier sum s_{n-1} and the Fejer sum $\sigma_{n}=\frac{1}{n} \sum_{i=0}^{n-1} s_{i}$, respectively.

Since $v_{m, n}(f)$ is the convolution of f with the de la Vallée Poussin kernel $V_{m, n}$, we clearly have

$$
\omega_{k}\left(v_{m, n}(f), \delta\right) \leq\left\|v_{m, n}\right\| \omega_{k}(f, \delta)
$$

where $\left\|v_{m, n}\right\|$ is the norm, or the Lebesgue constant, of the operator $v_{m, n}$.
Stechkin [11] made a detailed studies of behaviour of the value $\left\|v_{m, n}\right\|$ as a function of m and n. We will need just two facts from his work, one of them combined with a later result of Galkin [5].
a) The norm $\left\|v_{m, n}\right\|$ depends only on ratio m / n, and in a monotone way. Precisely, with

$$
\ell(x):=\frac{2}{\pi} \int_{0}^{\infty} \frac{|\sin x t \cdot \sin t|}{t^{2}} d t
$$

which is (non-trivially) a monotonely increasing function of x, we have

$$
\left\|v_{m, n}\right\|=\ell\left(x_{m / n}\right), \quad x_{m / n}:=\frac{1+m / n}{1-m / n} .
$$

b) The values of ℓ at integer points can be related to the so-called Watson constants $L_{M / 2}$ (for $M=2 N$, they turn into the Lebesgue constants $L_{N}:=\left\|s_{N}\right\|$ of the Fourier operator s_{N}). Namely,

$$
\ell(M+1)=L_{M / 2},
$$

and from the result of Galkin [5] that $L_{M / 2}<\frac{4}{\pi^{2}} \ln (M+1)+1$, we conclude that

$$
\begin{equation*}
\ell(p)<\frac{4}{\pi^{2}} \ln p+1 \quad \text { for integer } p \tag{5.2}
\end{equation*}
$$

therefore (rather roughly)

$$
\begin{equation*}
\ell(x)<\frac{4}{\pi^{2}} \ln (x+1)+1 \quad \text { for all } x \tag{5.3}
\end{equation*}
$$

2) Now, from definition (5.1), we see firstly that $v_{m, n}(f)$ is a trigonometric polynomial of degree $\leq n-1$, hence

$$
E_{n-1}(f) \leq\left\|f-v_{m, n}(f)\right\|,
$$

and secondly that $v_{m, n}$ acts as identity on T_{m}, therefore

$$
f-v_{m, n}(f) \perp T_{m} .
$$

So, we may apply Proposition 4.4 to the difference $f-v_{m, n}(f)$ to obtain

$$
\begin{aligned}
E_{n-1}(f) & \leq\left\|f-v_{m, n}(f)\right\| \\
& \leq c_{m+1,2 k}(h) \gamma_{2 k}^{*} \omega_{2 k}\left(f-v_{m, n}(f), h\right) \\
& \leq c_{m+1,2 k}(h)\left(1+\left\|v_{m, n}\right\|\right) \gamma_{2 k}^{*} \omega_{2 k}(f, h) \\
& =\left[\cos \left(\frac{\pi}{2} \frac{\pi \mu}{(m+1) h}\right)\right]^{-1}\left[1+\ell\left(\frac{1+m / n}{1-m / n}\right)\right] \gamma_{2 k}^{*} \omega_{2 k}(f, h) .
\end{aligned}
$$

Now, with some parameter $s \in[0,1)$ which may well depend on n and h, we put in the last line

$$
m=\lfloor s n\rfloor .
$$

With such an m, we have $m+1>s n$ and $m / n \leq s$, therefore

$$
\begin{equation*}
E_{n-1}(f) \leq\left[\cos \left(\frac{\pi}{2} \frac{\mu}{s} \frac{\pi}{n h}\right)\right]^{-1}\left[1+\ell\left(\frac{1+s}{1-s}\right)\right] \gamma_{2 k}^{*} \omega_{2 k}(f, h) . \tag{5.4}
\end{equation*}
$$

Finally, taking $h=\frac{\alpha \pi}{n}$, and evaluating the factor $1+\ell\left(x_{s}\right)$ with the help of (5.3), we obtain

$$
\begin{equation*}
E_{n-1}(f) \leq\left(\cos \frac{\pi \mu}{2 \alpha s}\right)^{-1}\left[2+\frac{4}{\pi^{2}} \ln \left(\frac{2}{1-s}\right)\right] \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{\alpha \pi}{n}\right), \tag{5.5}
\end{equation*}
$$

where we can minimize the right-hand side with respect to $s \in\left(\frac{\mu}{\alpha}, 1\right)$.
3) Now, using the last estimate, we establish Stechkin inequalities for particular α 's.

Theorem 5.1 For all $n \geq 1$, we have

$$
E_{n-1}(f) \leq c \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{2 \pi}{n}\right), \quad c=5
$$

Proof. In (5.5), take $\alpha=2$ and majorize μ by 1. Then the constant for $\delta=\frac{2 \pi}{n}$ takes the form

$$
c=\left(\cos \frac{\pi}{4 s}\right)^{-1}\left[2+\frac{4}{\pi^{2}} \ln \left(\frac{2}{1-s}\right)\right] .
$$

It turns out that the value $s=8 / 9$ is almost optimal, and we obtain Stechkin inequality with the constant

$$
\begin{equation*}
c=\left(\cos \frac{9 \pi}{32}\right)^{-1}\left[2+\frac{4}{\pi^{2}} \ln 18\right]=4.999144<5 . \tag{5.6}
\end{equation*}
$$

To make sure that our step away from 5 is free from a round-off error, we notice that, for $s=\frac{8}{9}$, we have in (5.4)

$$
\ell\left(\frac{1+s}{1-s}\right)=\ell(17)=L_{8} .
$$

Therefore, in the pass from (5.4) to (5.5), we can use the estimate (5.2) instead of (5.3), thus changing in (5.6) the value $\ln 18$ to $\ln 17$, and that will give the constant $c=4.962628$. We can make another bit down by computing directly the Lebesgue constant $L_{8}=2.137730$, hence getting

$$
c=\left(\cos \frac{9 \pi}{32}\right)^{-1}\left[1+L_{8}\right]=4.946034
$$

so that $c<5$ is secured.

Remark 5.2 Surprising is the fact that, in this theorem, the upper estimate is provided by one and the same linear method of approximation that works for all r simultaneously. Namely, for any r, the de la Vallée Poussin operator $v_{m, n}$ with $m=\left\lfloor\frac{8}{9} n\right\rfloor$ provides

$$
\left\|f-v_{m, n}(f)\right\| \leq 5 \gamma_{r}^{*} \omega_{r}\left(f, \frac{2 \pi}{n}\right), \quad \forall r \in \mathbb{N} .
$$

Perhaps it makes sense to try to derive such an estimate directly from the properties of $v_{m, n}$.

Theorem 5.3 For any $\alpha>1$, there exists a constant c_{α} that depends only on α such that

$$
\begin{equation*}
E_{n-1}(f) \leq c_{\alpha} \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{\alpha \pi}{n}\right), \quad n \geq 1 \tag{5.7}
\end{equation*}
$$

Proof. Putting (a non-optimal) $s=\frac{1}{\sqrt{\alpha}}$ in (5.5), and again majorizing μ by 1 , we obtain (5.7) with

$$
\begin{aligned}
c_{\alpha} & =\left(\cos \frac{\pi}{2 \sqrt{\alpha}}\right)^{-1}\left(\frac{4}{\pi^{2}} \ln \left(\frac{2 \sqrt{\alpha}}{\sqrt{\alpha}-1}\right)+2\right) \\
& \leq \frac{4}{\pi} \frac{\alpha}{\alpha-1}\left(\frac{4}{\pi^{2}} \ln \left(\frac{2 \sqrt{\alpha}}{\sqrt{\alpha}-1}\right)+2\right)
\end{aligned}
$$

where we have used the inequality $\cos \frac{\pi}{2} x \geq \frac{\pi}{4}\left(1-x^{2}\right)$ for $|x| \leq 1$.

6 Stechkin inequality for $\delta=\frac{\pi}{n}$

Theorem 6.1 For $\delta=\frac{\pi}{n}$, and $r=2 k$, we have

$$
\begin{equation*}
E_{n-1}(f) \leq c_{r}\left(\frac{\pi}{n}\right) \gamma_{r}^{*} \omega_{r}\left(f, \frac{\pi}{n}\right), \quad n \geq 1 \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{r}\left(\frac{\pi}{n}\right)=\mathcal{O}(\sqrt{r} \ln r) \tag{6.2}
\end{equation*}
$$

Proof. From the estimate (5.5), with $h=\frac{\pi}{n}$ and $s=\sqrt{\mu}$, we obtain the inequality (6.1) with the constant

$$
\begin{aligned}
c_{2 k}\left(\frac{\pi}{n}\right) & =\left(\cos \frac{\pi}{2} \sqrt{\mu}\right)^{-1}\left(\frac{4}{\pi^{2}} \ln \left(\frac{2}{1-\sqrt{\mu}}\right)+2\right) \\
& <\frac{4}{\pi} \frac{1}{1-\mu}\left(\frac{4}{\pi^{2}} \ln \left(\frac{2}{1-\sqrt{\mu}}\right)+2\right) .
\end{aligned}
$$

The estimate (6.2) follows now from the fact that

$$
1-\mu_{2 k}^{2}>\frac{c_{1}}{\sqrt{2 k}}, \quad c_{1}=\frac{2}{3},
$$

which we are proving in the next lemma. With the value $c_{1}=\frac{2}{3}$ at hands, we can give the explicit estimate $c_{r}\left(\frac{\pi}{n}\right)<2 \sqrt{r} \ln r+12 \sqrt{r}$.

Lemma 6.2 For $\mu_{2 k}^{2}:=\frac{8}{\pi^{2}} \sum_{\text {odd } i}^{k} \frac{a_{i}}{i^{2}}$, where $a_{i}:=\binom{2 k}{k+i} /\left(\begin{array}{c}\binom{k}{k} \text {, we have }\end{array}\right.$

$$
\begin{equation*}
\frac{c_{1}}{\sqrt{2 k}}<1-\mu_{2 k}^{2}<\frac{c_{2}}{\sqrt{2 k}}, \quad c_{1}=\frac{2}{3}, \quad c_{2}=\frac{5}{4} . \tag{6.3}
\end{equation*}
$$

Proof. Let us compute the value $\widehat{\Delta}_{t}^{2 k}\left(f_{0}, x\right)$ for $f_{0}(x)=\cos x$ at $x=0$. Since

$$
\widehat{\Delta}_{t}^{2}(\cos , x)=-\cos (x-t)+2 \cos x-\cos (x+t)=2 \cos x(1-\cos t)=4 \sin ^{2} \frac{t}{2} \cos x
$$

we have

$$
\left.\widehat{\Delta}_{t}^{2 k}\left(f_{0}, x\right)\right|_{x=0}=4^{k} \sin ^{2 k} \frac{t}{2}
$$

On the other hand, by the definition,

$$
\left.\widehat{\Delta}_{t}^{2 k}\left(f_{0}, x\right)\right|_{x=0}=\left.\sum_{i=-k}^{k}(-1)^{i}\binom{2 k}{k+i} \cos (x+i t)\right|_{x=0}=\binom{2 k}{k}\left[1-2 \sum_{i=1}^{k}(-1)^{i+1} a_{i} \cos i t\right] .
$$

So, we have

$$
1-2 \sum_{i=1}^{k}(-1)^{i+1} a_{i} \cos i t=\lambda_{k} \sin ^{2 k} \frac{t}{2}, \quad \lambda_{k}:=\frac{4^{k}}{\binom{2 k}{k}} .
$$

Integrating both parts twice, first time between 0 and u, and then between 0 and π, we obtain: for the left-hand side

$$
\left[\frac{u^{2}}{2}+2 \sum_{i=1}^{k}(-1)^{i+1} \frac{a_{i}}{i^{2}} \cos i u\right]_{0}^{\pi}=\frac{\pi^{2}}{2}-4 \sum_{\text {odd } i}^{k} \frac{a_{i}}{i^{2}}=\frac{\pi^{2}}{2}\left(1-\mu_{2 k}^{2}\right),
$$

and for the right-hand side

$$
\lambda_{k} \int_{0}^{\pi} \int_{0}^{u} \sin ^{2 k}\left(\frac{t}{2}\right) d t d u=\lambda_{k} \int_{0}^{\pi}(\pi-t) \sin ^{2 k}\left(\frac{t}{2}\right) d t=4 \lambda_{k} \int_{0}^{\pi / 2} \tau \cos ^{2 k}(\tau) d \tau
$$

(we firstly changed the order of integration and then put $\tau=\frac{\pi}{2}-\frac{t}{2}$). So, equating the rightmost values in the last two lines, we obtain

$$
\begin{equation*}
1-\mu_{2 k}^{2}=\frac{8}{\pi^{2}} \frac{4^{k}}{\binom{2 k}{k}} \int_{0}^{\pi / 2} t \cos ^{2 k} t d t \tag{6.4}
\end{equation*}
$$

Now, by Wallis inequality, we have

$$
\sqrt{\frac{\pi}{2}} \sqrt{2 k} \leq \frac{4^{k}}{\binom{2 k}{k}} \leq \sqrt{\frac{\pi}{2}} \sqrt{2 k+1}
$$

while the integral admits the two-sided estimate

$$
\frac{1}{2 k+1} \leq \int_{0}^{\pi / 2} t \cos ^{2 k}(t) d t \leq \frac{1}{2 k}
$$

because $\sin t \leq t \leq \frac{\sin t}{\cos t}$ on $\left[0, \frac{\pi}{2}\right]$, and $\int_{0}^{\pi / 2} \sin (t) \cos ^{m}(t) d t=\frac{1}{m+1}$. Hence

$$
\frac{8}{\pi^{2}} \sqrt{\frac{\pi}{2}} \frac{\sqrt{2 k}}{2 k+1} \leq 1-\mu_{2 k}^{2} \leq \frac{8}{\pi^{2}} \sqrt{\frac{\pi}{2}} \frac{\sqrt{2 k+1}}{2 k}
$$

and (6.3) follows with $c_{1}=\frac{8}{\pi^{2}} \sqrt{\frac{\pi}{2}} \frac{2 k}{2 k+1}>\frac{2}{3}$ and $c_{2}=\frac{8}{\pi^{2}} \sqrt{\frac{\pi}{2}} \sqrt{\frac{2 k+1}{2 k}}<\frac{5}{4}$.

7 On the factor \sqrt{r} at $\delta=\frac{\pi}{n}$

For $\delta=\frac{\pi}{n}$, our estimates for the Stechkin constant (with the lower bound yet to be proved) look as follows:

$$
c^{\prime} \gamma_{r}^{*} \leq K_{n, r}\left(\frac{\pi}{n}\right) \leq c \sqrt{r} \ln r \gamma_{r}^{*},
$$

i.e., the upper and lower bounds do not match. In $\S 2$ we already expressed our belief that additional factors on the right are redundant. However, as we show in this section, appearance of the factor \sqrt{r} within our method is unavoidable. (The factor $\ln r$ originates from the use of the de la Vallée Poussin sums, and perhaps can be removed by some more sophisticated technique.)

From our initial steps (3.2)-(3.4), it is easy to see that our upper estimates in all Stechkin inequalities are valid not only for the standard modulus of smoothness $\omega_{2 k}(f, h)$, but also for the modulus

$$
\begin{equation*}
\omega_{2 k}^{*}(f, h):=\left\|\int_{\mathbb{R}} \widehat{\Delta}_{t}^{2 k}(f, \cdot) \phi_{h}(t) d t\right\|, \tag{7.1}
\end{equation*}
$$

which has a smaller value at every h. It is clear that the Stechkin constant defined with respect to a smaller modulus takes larger values, and now we show that, for the modulus $\omega_{2 k}^{*}(f, h)$, the increase at $h=\frac{\pi}{n}$ is exactly by the factor $\sqrt{2 k}$.

Theorem 7.1 For $r=2 k$, we have

$$
\frac{\gamma_{r}^{*}}{1-\mu_{r}^{2}} \leq \sup _{f \in T_{n-1}^{\perp}} \frac{\|f\|}{\omega_{r}^{*}\left(f, \frac{\pi}{n}\right)} \leq \frac{4}{\pi} \frac{\gamma_{r}^{*}}{1-\mu_{r}^{2}}
$$

where

$$
\frac{\gamma_{r}^{*}}{1-\mu_{r}^{2}} \asymp \sqrt{r} \gamma_{r}^{*} \asymp \frac{r}{2^{r}} .
$$

Proof. The upper bound was established in (4.10)-(4.11). For the lower bound, take $f_{0}(x)=\cos n x$. Then

$$
\begin{equation*}
\widehat{\Delta}_{t}^{2 k}\left(f_{0}, x\right)=4^{k} \sin ^{2 k}\left(\frac{n t}{2}\right) \cos n x, \quad \phi_{\pi / n}(t)=\frac{n}{\pi}\left(1-\frac{n}{\pi}|t|\right), \quad|t| \leq \frac{\pi}{n} \tag{7.2}
\end{equation*}
$$

hence

$$
\begin{aligned}
\omega_{2 k}^{*}\left(f_{0}, \frac{\pi}{n}\right) & =\left\|\int_{-\pi / n}^{\pi / n} \Delta_{t}^{2 k}\left(f_{0}, \cdot\right) \phi_{\pi / n}(t) d t\right\| \\
& =2 \cdot 4^{k} \int_{0}^{\pi / n} \sin ^{2 k}\left(\frac{n t}{2}\right) \frac{n}{\pi}\left(1-\frac{n}{\pi} t\right) d t \\
& =\frac{8}{\pi^{2}} 4^{k} \int_{0}^{\pi / 2} \tau \cos ^{2 k}(\tau) d \tau \quad\left(\tau=\frac{\pi}{2}-\frac{n t}{2}\right) \\
& \stackrel{(6.4)}{=} \frac{1-\mu_{2 k}^{2}}{\gamma_{2 k}^{*}},
\end{aligned}
$$

while $\left\|f_{0}\right\|=1$.

Since also $E_{n-1}\left(f_{0}\right)=1$, we have the same estimate for the ratio $E_{n-1}\left(f_{0}\right) / \omega_{2 k}^{*}\left(f_{0}, \frac{\pi}{n}\right)$, therefore, for the Stechkin constant $K_{n, r}^{*}(\delta)$ defined with respect to the modulus $\omega_{2 k}^{*}(f, \delta)$, we obtain at $\delta=\frac{\pi}{n}$

$$
c^{\prime} \sqrt{r} \gamma_{r}^{*} \leq K_{n, r}^{*}\left(\frac{\pi}{n}\right):=\sup _{f \in C} \frac{E_{n-1}(f)}{\omega_{r}^{*}\left(f, \frac{\pi}{n}\right)} \leq c \sqrt{r} \ln r \gamma_{r}^{*} .
$$

8 Lower estimate

Lemma 8.1 For any n, r and ϵ, and for any $\delta<\frac{\pi}{r}$, there exists an $f \in C$ such that,

$$
E_{n-1}(f) \geq \frac{1}{2} \gamma_{r-1}^{*} \omega_{r}(f, \delta)-\epsilon .
$$

Proof. Take the step periodic function

$$
f_{0}(x)= \begin{cases}1, & x \in(-\pi, 0] \\ 0, & x \in(0, \pi]\end{cases}
$$

For any $x \in[-\pi, \pi]$, and for any $h<\frac{\pi}{r}$, consider the values of this function at the points $x_{i}=x+i h$, where $0 \leq i \leq r$. It is clear that, for some $m \leq r$, we have either

$$
f_{0}\left(x_{i}\right)=1, \quad 0 \leq i \leq m, \quad f_{0}\left(x_{i}\right)=0, \quad m<i \leq r,
$$

or the other way round. Therefore, for the modulus of smoothness $\omega_{r}\left(f_{0}, \delta\right)$, we have the following relations:

$$
\begin{aligned}
\omega_{r}\left(f_{0}, \delta\right) & =\max _{0<h \leq \delta} \max _{x}\left|\Delta_{h}^{r} f_{0}(x)\right|=\max _{0<h \leq \delta} \max _{x}\left|\sum_{i=0}^{r}(-1)^{i}\binom{r}{i} f_{0}(x+i h)\right| \\
& =\max _{0 \leq m \leq r}\left|\sum_{i=0}^{m}(-1)^{i}\binom{r}{i}\right|=\max _{0 \leq m \leq r}\left|(-1)^{m}\binom{r-1}{m}\right|=\binom{r-1}{\left\lfloor\frac{r-1}{2}\right\rfloor}=1 / \gamma_{r-1}^{*},
\end{aligned}
$$

i.e.,

$$
\omega_{r}\left(f_{0}, \delta\right)=1 / \gamma_{r-1}^{*} .
$$

It is also clear that, for the best L_{∞}-approximation of f_{0}, we have

$$
E_{n-1}\left(f_{0}\right)=\frac{1}{2},
$$

therefore the result for such an f_{0} (without ϵ subtracted).
This is almost what we need except that f_{0} is not continuous. But we can get a continuous f by smoothing f_{0} at the points of discontinuity, say, by linearization. For a given ϵ, set

$$
f(x)=\frac{1}{\epsilon} \int_{-\epsilon / 2}^{\epsilon / 2} f_{0}(x+t) d t
$$

i.e.,

$$
f(x)=\left\{\begin{array}{l}
1, \quad x \in[-\pi+\epsilon,-\epsilon] \\
0, \quad x \in[\epsilon, \pi-\epsilon] ; \\
\text { is linear on }[-\epsilon, \epsilon] \text { and }[\pi-\epsilon, \pi+\epsilon]
\end{array}\right.
$$

Then, from the definition (or, more generally, because f is the convolution of f_{0} with a positive kernel), it folows that

$$
\omega_{r}(f, \delta) \leq \omega_{r}\left(f_{0}, \delta\right)=1 / \gamma_{r-1}^{*}
$$

As for the best approximation of f, we have

$$
E_{n-1}(f) \geq \frac{1}{2}-\epsilon^{\prime}
$$

Indeed, since $E_{n-1}(f)=\left\|f-t_{n-1}\right\| \leq\|f\|=1$, the polynomial t_{n-1} of best approximation satisfies $\left\|t_{n-1}\right\| \leq 2$, therefore, by Bernstein inequality, we have $\left\|t_{n-1}^{\prime}\right\| \leq 2(n-1)$, hence, on the interval $[-\epsilon, \epsilon]$ of the length 2ϵ the range of t_{n-1} is not more than $4(n-1) \epsilon=: 2 \epsilon^{\prime}$, while the function f on the same interval takes the values 0 and 1 .

Theorem 8.2 For any r, and any $\delta \leq \frac{\pi}{r}$, we have

$$
K_{n, r}(\delta):=\sup _{f \in C} \frac{E_{n-1}(f)}{\omega_{r}(f, \delta)} \geq c_{r}^{\prime} \gamma_{r}^{*}
$$

where

$$
c_{r}^{\prime}=\left\{\begin{array}{cl}
\frac{r}{r+1}, & r=2 k-1 ; \\
1, & r=2 k .
\end{array}\right.
$$

In particular, for any r and any $n \geq 2 r$ (i.e., when $\frac{2 \pi}{n} \leq \frac{\pi}{r}$),

$$
K_{n, r}\left(\frac{2 \pi}{n}\right):=\sup _{f \in C} \frac{E_{n-1}(f)}{\omega_{r}\left(f, \frac{2 \pi}{n}\right)} \geq c_{r}^{\prime} \gamma_{r}^{*}, \quad n \geq 2 r .
$$

Proof. The first lower bound is just a reformulation of the previous lemma, because, for $\gamma_{r}^{*}:=\binom{r}{\left(\frac{r}{2}\right\rfloor}^{-1}$, we have $\frac{1}{2} \gamma_{r-1}^{*}=c_{r}^{\prime} \gamma_{r}^{*}$.

Remark 8.3 The order $r^{1 / 2} 2^{-r}$ of the lower bound for the Stechkin constant was established earlier by Ivanov [7], but he did not pay attention to the constant (and his extremal function was different from ours).

9 Stechkin constants for small r

For small $r=2 k$, when μ_{r} is noticeably smaller than 1 , our method in $\S 5$ will give for the Stechkin constant the upper estimates which are better than $5 \gamma_{r}^{*}$, but they will never be smaller than $2 \gamma_{r}^{*}$ because of the factor $1+\left\|v_{m, n}\right\|$.

Surprisingly, better values (for small r) which stand quite close to the lower bound $1 \cdot \gamma_{r}^{*}$ could be obtained through technique of intermediate approximation with Steklovtype functions. (For general r, this technique provides the same overblown estimate $c_{r}<r^{a r}$ as Stechkin's original proof, therefore a surprise.)

Such a technique is of course well-known (it was introduced probably by Brudnyi [1] and Freud-Popov [4]), and it was exploited repeatedly for proving Stechkin inequalities of various types (e.g., for spline and one-sided approximations). Our only innovation (if any) is the use of the central differences instead of the forward ones, which reduces the constants by the factor $\binom{2 k}{k}$, and the will to take a closer look at their actual values.

Lemma 9.1 We have

$$
E_{n-1}(f) \leq c_{2 k}\left(\frac{\alpha \pi}{n}\right) \gamma_{2 k}^{*} \omega_{2 k}\left(f, \frac{\alpha \pi}{n}\right)
$$

where

$$
\begin{equation*}
c_{2 k}\left(\frac{\alpha \pi}{n}\right)=1+F_{2 k} \frac{k^{2 k}}{(\alpha \pi)^{2 k}} \sum_{i=1}^{k} \frac{2 b_{i}}{i^{2 k}}, \quad b_{i}=\binom{2 k}{k+i} \tag{9.1}
\end{equation*}
$$

and $F_{2 k}$ are the Favard constants.
Proof. Given f, with any $2 k$ times differentiable function f_{h}, we have

$$
\begin{equation*}
E_{n-1}(f) \leq E_{n-1}\left(f-f_{h}\right)+E_{n-1}\left(f_{h}\right) \leq\left\|f-f_{h}\right\|+\frac{F_{2 k}}{n^{2 k}}\left\|f_{h}^{(2 k)}\right\| \tag{9.2}
\end{equation*}
$$

where we used the Favard inequality for the best approximations of f_{h}. A typical choice of f_{h} is via the Steklov functions of order $2 k$:

$$
\begin{gathered}
I_{i h}(f, x):=\frac{1}{(h / k)^{2 k}} \underbrace{\int_{-h / 2 k}^{h / 2 k} \cdots \int_{-h / 2 k}^{h / 2 k}}_{2 k} f\left(x-i\left(t_{1}+\cdots+t_{2 k}\right)\right) d t_{1} \cdots d t_{2 k} \\
I_{i h}^{(2 k)}(f, x)=\frac{(-1)^{k}}{(i h / k)^{2 k}} \widehat{\Delta}_{i h / k}^{2 k} f(x)
\end{gathered}
$$

namely

$$
f_{h}:=\frac{1}{\binom{2 k}{k}} \sum_{\substack{i=-k \\ i \neq 0}}^{k}(-1)^{i+1}\binom{2 k}{k+i} I_{i h}(f)=\gamma_{2 k}^{*} \sum_{i=1}^{k}(-1)^{i+1} 2 b_{i} I_{i h}(f) .
$$

Then

$$
\begin{gathered}
\left\|f-f_{h}\right\| \leq \gamma_{2 k}^{*} \omega_{2 k}(f, h), \\
\left\|f_{h}^{(2 k)}\right\| \leq \gamma_{2 k}^{*} \sum_{i=1}^{k} \frac{2 b_{i}}{(i h / k)^{2 k}} \omega_{2 k}(f, i h / k) \leq \gamma_{2 k}^{*} \omega_{2 k}(f, h) \frac{k^{2 k}}{h^{2 k}} \sum_{i=1}^{k} \frac{2 b_{i}}{i^{2 k}},
\end{gathered}
$$

whence applying (9.2)

$$
E_{n-1}(f) \leq c_{2 k}(h) \gamma_{2 k}^{*} \omega_{2}(f, h), \quad c_{2 k}(h)=1+F_{2 k} \frac{k^{2 k}}{(n h)^{2 k}} \sum_{i=1}^{k} \frac{2 b_{i}}{i^{2 k}},
$$

and we take $h=\frac{\alpha \pi}{n}$.
In (9.1), we can obtain a small value only if $\frac{k}{\alpha \pi}<1$, i.e., we may try $k=(1,2,3)$ for $\alpha=1$, and $k=(1,2,3,4,5)$ for $\alpha=2$. So we did (dropping those values for which the resulting constants in (9.1) were not close to 1).

Theorem 9.2 For $\delta=\frac{\pi}{n}$ and $\delta=\frac{2 \pi}{n}$, we have

$$
E_{n-1}(f) \leq c_{r}(\delta) \gamma_{r}^{*} \omega_{r}(f, \delta),
$$

where $c_{2 k-1}(\delta)=c_{2 k}(\delta)$, and the values of $c_{2 k}(\delta)$ are given below

$$
\begin{array}{c|c|c|c}
c_{2}\left(\frac{\pi}{n}\right) & c_{4}\left(\frac{\pi}{n}\right) \\
\hline 1 \frac{1}{4} & 2 \frac{7}{10}
\end{array}, \quad \begin{gathered}
c_{2}\left(\frac{2 \pi}{n}\right)
\end{gathered} c_{4}\left(\frac{2 \pi}{n}\right) ~ c_{6}\left(\frac{2 \pi}{n}\right) .
$$

Proof. We will use the following values: $F_{2}=\frac{\pi^{2}}{8}, F_{4}=\frac{5 \pi^{4}}{384}, F_{6}=\frac{61 \pi^{6}}{46080}$.

1) For $2 k=2$, we have

$$
c_{2}\left(\frac{\alpha \pi}{n}\right)=1+\frac{\pi^{2}}{8} \frac{2}{(\alpha \pi)^{2}}=1+\frac{1}{4 \alpha^{2}} .
$$

With $\alpha=1$ and $\alpha=2$, we obtain $c_{2}\left(\frac{\pi}{n}\right)=\frac{5}{4}$ and $c_{2}\left(\frac{2 \pi}{n}\right)=\frac{17}{16}$. Also, with $\alpha=\frac{1}{2}$, we obtain the remarkable inequality

$$
E_{n-1}(f) \leq 1 \cdot \omega_{2}\left(f, \frac{\pi}{2 n}\right)
$$

2) For $2 k=4$,

$$
c_{4}\left(\frac{\alpha \pi}{n}\right)=1+\frac{5 \pi^{4}}{384} \frac{2^{4}}{(\alpha \pi)^{4}} \cdot 2\left[\frac{4}{1^{4}}+\frac{1}{2^{4}}\right]=1+\frac{325}{192} \frac{1}{\alpha^{4}} .
$$

With $\alpha=1$ and $\alpha=2$, we obtain $c_{4}\left(\frac{\pi}{n}\right)=\frac{517}{192}=2.6927$, and $c_{4}\left(\frac{2 \pi}{n}\right)=\frac{3397}{3072}=1.1058$.
3) For $2 k=6$, with $\alpha=2$, we have

$$
c_{6}\left(\frac{2 \pi}{n}\right)=1+\frac{61 \pi^{6}}{46080} \frac{3^{6}}{(2 \pi)^{6}} \cdot 2\left[\frac{15}{1^{4}}+\frac{6}{2^{6}}+\frac{1}{3^{6}}\right]=1.4552<1 \frac{1}{2} .
$$

Theorem 9.2 provides a certain support to our Conjecture 2.1, which says, in particular, that, for even $r=2 k$, and for $\delta \geq \frac{\pi}{n}$, the best constant in the Stechkin inequality has the value $K_{n, r}(\delta)=1 \cdot \gamma_{r}^{*}$.

Acknowledgements. Our thanks to Alexander Babenko for his comments on a draft of this paper.

References

[1] Yu. A. Brudnyi, On a theorem of local best approximations, Kazan. Gos. Univ. Uchen. Zap. 124 (1964), vol. 6, 43-49 (in Russian).
[2] N. I. Chernykh, The best approximation of periodic functions by trigonometric polynomials in L_{2}, Mat. Zametki 2 (1967), 513-522 = Math. Notes 2 (1967), no. 5-6, 818821.
[3] R.A.DeVore, G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
[4] G. Freud, V.A.Popov, Certain questions connected with approximation by splinefunctions and polynomials, Studia Sci. Math. Hungar. 5 (1970), 161-171 (in Russian).
[5] P. V. Galkin, Estimate for Lebesgue constants, Trudy Mat. Inst. Steklov 109 (1971), 3-5 = Proc. Steklov Inst. Math. 109 (1971), 1-4.
[6] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 6-th ed, San Diego, Academic Press, 2000
[7] V. I. Ivanov, On the approximation of functions in L_{p} spaces, Mat. Zametki 56 (1994), no. 2, 15-40 = Math. Notes 56 (1994), no. 1-2, 770-789.
[8] L. V. Kantorovich, G. P. Akilov, Functional Analysis, 2-oe izd, Moskva, Nauka, 1977 = Oxford, Pergamon, 1982.
[9] N. P. Korneichuk, The exact constant in D. Jackson's theorem on uniform approximation of continuous periodic functions, Doklady AN SSSR 145(1962), 514-515 = Sov. Math. Dokl. 3 (1962), 1040-1041.
[10] S. B. Stechkin, On the order of the best approximations of continuous functions, Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 219-242 (in Russian).
[11] S. B. Stechkin, On de la Vallée Poussin sums, Doklady Akad. Nauk SSSR, 80 (1951), no. 4, 545-548 (in Russian).

Simon Foucart	Yuri Kryakin	Alexei Shadrin
Dept of Mathematics	Institute of Mathematics	DAMTP
1533 Stevenson Center	University of Wroclaw	University of Cambridge
Vanderbilt University	Plac Grunwaldzki 2/4	Wilberforce Road
Nashville, TN 37240	50-384 Wroclaw	Cambridge CB3 0WA
USA	Poland	UK
simon.foucart@vanderbilt.edu	kryakin@list.ru	a.shadrin@damtp.cam.ac.uk

[^0]: ${ }^{0}$ AMS classification: Primary 41A17, 41A44, 42A10.
 ${ }^{0}$ Key words and phrases: Jackson-Stechkin inequality, r-th modulus of smoothness, exact constants.

